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Note 

Grid Generation for Inlet Configurations 
Using Conformal Mapping 

An orthogonal grid generation method for inlet geometries is developed using conformal 
mapping. In this method, the region on the physical plane is mapped onto the computational 
plane by one or two steps of conformal mapping; the mapping functions are determined 
numerically. A simple extension of this method allows the generation of three-dimensional 
grids for asymmetric geometries. Grids of H-type are also generated through the fundamental 
mapping function for C-type grids. 0 1985 Academic Press, Inc. 

1. INTRODUCTION 

In this paper, a technique to generate orthogonal grids for inlet and inlet-center- 
body configurations is proposed. The grids are intended to be suitable for use with 
finite volume transonic calculation and conformal mapping is employed to generate 
them. 

The problems for inlet and inlet-centerbody configurations have been treated by 
Arlinger [I] and Ives and Menor [Z], respectively. In the methods developed by 
these authors, the region exterior to the inlet (or inlet-centerbody) configuration is 
mapped onto a near circle. The near circle is then mapped to a unit circle. However, 
the mapping to the final near circle needs a number of sequential steps. The method 
described here maps the region on the physical plane onto a rectilinear strip 
through one or two transformations. This method is also applied to exhaust nozzle 
configurations. 

2. ONE-STEP METHOD 

2.1. Fundamental Mapping (C-Type Grids) 

We consider a transformation function which maps the region of the physical 
plane (z = x + iy plane) shown in Fig. 1 onto an rectilinear strip 0 <q < 1 on the 
computational plane ([ = 5 + iv plane) (Fig. 2). It is assumed: (1) the boundaries of 
the region on z plane y = yl(x) and y = y2(x) along the curves ABC and FED are 
given by two sets of data zl, =x1, + iyl, (2<n <nl - 1) and 22,=x2,+ iy2, 
(2 d n < n2 - 1 ), (2) x2 takes the minimum x2,, at n = n3. The mapping function is 
assumed to have the form 
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FIG. 1. Physical plane (z plane). 
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where h; Ak, Bk (1 G k < K); t,, and L are unknown real constants to be determined. 
When Ak = Bk = 0 (1 < k 6 K), the expression (1) gives the transformation function 
which maps the upper half plane y > 0 with a cut y = h (x > 0) onto the rectilinear 
strip 0 6 rj < 1 on 5 plane. 

Putting q = 0 and 1 in (1) and writing the real and imaginary parts separately, we 
get on rj = 0, 
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FIG. 2. Computational plane ([ plane). 
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and on n= 1, 

y2=h+B,+ 2 A,sinh 
(k-1)n 

k=2 L 
+ Bk cash (k;l) “1 

x cos (k - 1) 45 - 50) 
L . 

The expressions (4) and (5) mean the assumption that yl and y2 are even periodic 
functions of t = [ - &, with a period 2L. The unknown constants are determined by 
following iterative method of solution. 

The nth approximations for h, Ak, Bk, &,, L are assumed to be known. 

(i) Substitution of these values in (2) and (3) gives the (n+ 1)th 
approximations of xl and x2. 

(ii) Find 5 = tnX which makes x2(5) minimum and determine A, so that 
x2(5,3) = -%. 

(iii) Obtain the solutions of xl(<)=xlz and x2(<) =x2, and take the 
smaller as <r. 

(iv) Obtain the solutions of xl(t) = ~2,~ _ 1 and x2(5) = ~2,~~~ and take the 
larger as t2. 

(v) Determinezl(~,)=zl,,z2(~,)=z2,,z1(~,)=zl~,, andz2(<,)=z2,,by 
extrapolation. The procedure (ik(vi) defines xl(t) and x2( 5) for the interval 

5,<5<r*=rl+L. (6) 

(vi) Put L=t,-{, and &,=t,. 
(vii) Though the left-hand sides of (4) and (5) yl and y2 are originally given 

as functions of x, they are regarded as functions of 5: for the interval (6) through the 
functions xl(t) and x2( 5). The constants h, Ak (2 < k < K) and Bk (1 < k < K) are 
determined by the Fourier analysis. The relations 

Bk? j” 
LO 

yl(t) cos (k- l) 7rr dt 
L ’ 

and 

where t = < - t,,, are used. 
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FIG. 3. Example of C-type grid (1). nl = 19, n2 = 25, K= 40, r = 0.5. 

(viii) All of the (n + 1)th approximations 4 W+ ‘) thus obtained are replaced 
by (1 - r) @“) + @+ I), where r is a relaxation constant, typically 0.5. This prevents 
the divergence of the successive approximation. The procedure (ik(viii) is repeated 
until the required convergence is attained. The first approximation is given by 
/z=~~,~,&=B~=O (ldk<K), <l=O,L=xl,l-l-xl,, for example. Through 
the calculation, the use of double precision is recommended because the hyperbolic 
functions included take very large values for large k. 

The curves of constant r and rl on z plane give the grids of C-type. The examples 
of the grids generated by this method are shown in Figs. 3 and 4. It is not difficult 
to choose the values of 5 so that two different geometric grids match along a com- 
mon line, leading to the generation of grids suitable for three-dimensional asym- 
metric inlet flow analyses [2], An example of two matched planer grids is shown in 
Fig. 5. The grid for the lower geometry was developed choosing the values of 5 so 
as to match that of the upper geometry along the centerline. 

FIG. 4. Example of C-type grid (2). nl = 22, n2 = 25, K = 40, r = 0.5. 
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FIG. 5. Orthogonal grids matched along the centerline. 

2.2. H-Type Grids 

Once the function (1) is determined, it is utilized to generate an H-type grid 
suitable for the calculation of the flows in boundary layers or mixing zones of 
exhaust nozzles. The rectilinear strip 0 < q < 1 on 5 plane is mapped onto the upper 
half Y>O of Z=X+iY plane with a cut Y= 1 (X20) by 

Z=X+iY=[-t,7-k [exp(-n(i--r,)}+ 11. (7) 

The point c, = 5, + i corresponds to the branch point z, given arbitrarily on DEF 
on z plane. The lines of constant X or Y on z plane give the H-type grid. Equation 
(7) cannot be solved explicitly for [ corresponding to given Z and iterative method 
must be employed. Attention is payed to that (dZ/d[)([,) = 0. Examples are shown 
in Figs. 6 and 7 for the H-type grids generated by this method. 

FIG. 6. H-type grid for the inlet same as shown in Fig. 3. 
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FIG. 7. H-type grid for the inlet same as shown in Fig. 4. 

3. TWO-STEP METHOD 

The one-step method described in the preceding section is applied even when the 
configuration has a sharp angle at B as the example shown in Fig. 4. But when the 
angle is nearly right angle, as the case for a blunt-nosed centerbody, the resolution 
of the mapping diminishes around there. In this case, the two-step method 
described hereafter is useful. 

3.1. Fundamental Mapping (C-Type Grids) 

First, we map the region ABC’DEF on z plane (Fig. 8) onto the rectilinear strip 
Obq< 1 on [ plane (Fig. 9) by 

1 
Kl 

+l) +A,+ 1 A,sin (k- 1) dl- 50) 
Ll . 

(8) 
k=2 

The constants h, Ak, &,, L1 are determined in a manner similar to that in the 
preceding section. The relation (8) is obtained by putting Bk = 0 (k 2 1) in (1) and 
gives the transformation function for the inlets without centerbodies. We denote the 
image of the arc BC on c plane by 

.kF 
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FIG. 8. Physical plane (z plane). Inlet configuration having an acute corner at B. 
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FIG. 9. First step mapping onto [ plane. 

Next, the region ABCDEF on [ plane (Fig. 9) is mapped onto the semi-infinite 
strip O<u,O<v<l, on w=u+iv plane (Fig. 10) by 

i=flogcoshy+B,+ F B,cos 
(2k- l)n(w-i) 

2L . 
k=l 2 

It is supposed that the points B ([ = <,) and C ([ = t4+ iq4) are mapped to the 
origin w = 0 and w = L2, respectively. The unknown constants B, (0 Sk < K2) and 
L2 are determined similarly as in the preceding section. We have at u = 0, 

t=;logcosh’~+B,+ F B,cosh 
(2k-1)x (2k-1)nu 

23% 
cos 

k=l L2 

and 

q=ql(()= f B,sinh(2k2~1’~sin(2kL1)Ku. 
k=l 2 2 

This leads to 

(2k-1)n 
2452 

sin(2k-1)nudu 

2L2 
(1 <k<K2). 

Correspondence of the point B to w = 0 gives 

Bo=13- g B,COSh 
(2k- 1)n 

k=l 2L, 
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FIG. 10. Second step mapping onto w plane. 
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FIG. 11. Example of C-type grid generated by two-step method. nl = 10, n2 = 18, Kl = 40, rl = 0.5, 
K2=20. r2=0.1. 

The relation (10) indicates the assumption made: ql(u) is an odd periodic function 
with a period 4L2 and is symmetric about u = Lz. 

The semi-infinite strip CBAFED on w plane is mapped onto the infinite strip 
0~12~1 on (2=<2+iq2 plane by 

2 
w = It arccosh exp 

The lines of constant 52 or 12 give the C-type grid on z plane. An example of 
C-type grid generated by this method is given in Fig. 11. 

3.2. H-Type Grids 

We generate an H-type grid on z plane, using the transformation functions (8) 
and (9). We denote by z, the branch point which is given arbitrarily on DEF on z 
plane. The infinite strip on 12 plane 0 < 12 < 1 is mapped onto the upper half 
Y2>0 of 22=X2+iY2 plane with a cut Y2=1 (X2>0) by 

22=c2-52,-i[exp{-n(i2--<2,)}+1], (11) 

FIG. 12. H-type grid for the configuration same as shown in Fig. 11. 
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where 12, = 52, + i is the image of z, on 12 plane. The curves of constant X2 or Y2 
on z plane give an H-type grid. The transformation (11) cannot be solved explicitly 
for (2 and successive approximation must be employed to obtain the value of 12 
corresponding to given 22. Attension is also payed to that (dZ2/d[2)([2,) =O. 
Figure 12 shows the H-type grid generated by the present method for the same con- 
figuration as shown in Fig. 11. 
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